- (21) J. P. Devlin and I. C. Hiatsune, Spectrochim. Acta, 17, 206 (1961).
 (22) T. L. Cottrel, "The Strength of the Chemical Bond", 2nd ed., Butterworths, London, 1958. (23) M. Lister and L. E. Sutton, Trans. Faraday Soc., 35, 495 (1939).

- (24) P. A. Giguere and D. Chin, *Can. J. Chem.*, **39**, 1216 (1961).
 (25) J. Sheridan and W. Gordy, *Phys. Rev.*, 79, 513 (1950).
 (26) F. W. Levine and S. Abramowitz, *J. Chem. Phys.*, **48**, 2562 (1966).
 (27) C. B. Colburn and A. Kennedy, *J. Chem. Phys.*, **35**, 1892 (1961).
- (28) M. L. Unland, J. H. Lucher, and J. R. Van Wazer, J. Chem. Phys., 50, 3214 (1969).
- (1905).
 (29) Y. Morino and S. Saito, J. Mol. Spectrosc., 19, 435 (1966).
 (30) J. W. Nebgen, F. I. Metz, and W. B. Rose, J. Mol. Spectrosc., 21, 99 (1966).
- (31) J. Troe, H. Wagner, and G. Weden, Z. Phys. Chem. (Frankfurt am Main), 56, 238 (1967)
- (32) L. Pierce, R. Jackson, and N. DiCanni, J. Chem. Phys., 35, 2240 (1961).
- (33) L. Pauling and L. O. Brockway, J. Am. Chem. Soc., 59, 13 (1937)
- J. Shamir, D. Yellin, and H. Claassen, Isr. J. Chem., 12, 1015 (1974).
- (35) R. H. Miller, D. L. Bernitt, and I. C. Hiatsune, Spectrochim. Acta, Part A, 23, 223 (1967)
- (36) (a) F. P. Deodati and L. S. Bartell, J. Mol. Struct., 8, 395 (1971); (b) R. R. Smardzewski and W. B. Fox, J. Fluorine Chem., 6, 417 (1975).
- (37) J. Czamowski, E. Costellano, and H. J. Schumacher, Chem. Commun., 1255 (1968)
- (38) H. Kim, E. F. Pearson, and E. H. Appelman, J. Chem. Phys., 56, 1 (1972).
- (39) J. A. Goleb, H. H. Claassen, H. M. Studier, and E. H. Appelman, Spectrochim. Acta, Part A, 28, 65 (1972).
- (40) P. N. Nobel and G. C. Pimentel, Spectrochim. Acta, Part A, 24, 797 (1968).
- (41) S. L. Rock, E. F. Pearson, E. H. Appelman, C. L. Norris, and H. W. Flygare, J. Chem. Phys., **59**, 3940 (1973). (42) E. W. Lawless and I. C. Smith, "Inorganic High Energy Oxidizers", Marcel
- Dekker, New York, N.Y., 1968. (43) K. R. Loos, G. T. Gaetschel, and V. A. Camponile, *J. Chem. Phys.*, **52**, 4418
- (1970)

- (44) J. T. Malone and H. A. McGee, Jr., J. Phys. Chem., 69, 4338 (1965).
 (45) N. J. Lehmann, J. Mol. Spectrosc., 7, 261 (1961).
 (46) L. Pauling, "The Nature of the Chemical Bond", 3rd ed., Cornell University

Press, Ithaca, N.Y., 1960.

- (47) J. W. Linnett, J. Am. Chem. Soc., 83, 2643 (1961).
- (48) R. D. Spratley and G. C. Pimentel, J. Am. Chem. Soc., 88, 2394 (1966).
- (49) F. P. Billingsley II, J. Chem. Phys., **62**, 864 (1975).
 (50) C. Petrongolo, E. Scrocco, and J. Tomasi, J. Chem. Phys., **48**, 407
- (1968).
- (51) S. D. Peyerimhoff and R. J. Buenker, Theor. Chim. Acta, 9, 103 (1967) (52) J. Peslak Jr., D. S. Klett, and C. W. David, J. Am. Chem. Soc., 93, 5001
- (1971) (53) R. Ditchfield, J. Del Bene, and J. A. Pople, J. Am. Chem. Soc., 94, 4806 (1972).
- L. C. Snyder and H. Basch, "Molecular Wavefunctions and Properties", (54)
- (34) E. O. Shyder and H. Basch, Water difference waveful clubs and Properties, Wiley, New York, N.Y., 1972.
 (55) W. Sawodny and P. Pulay, *J. Mol. Spectrosc.*, **51**, 135 (1974).
 (56) D. P. Chong, F. G. Herring, and D. McWilliams, *J. Electron Spectrosc. Relat. Phenom.*, **7**, 445 (1975).
- (57) W. J. Hehre, R. F. Stewart, and J. A. Pople, J. Chem. Phys., 51, 2657 (1969); W. J. Hehre, W. A. Lathan, D. Ditchfield, M. D. Newton, J. A. Pople, QCPE No. 10, 1973, p 236. (58) R. Ditchfield, W. J. Hehre, and J. A. Pople, *J. Chem. Phys.*, **54**, 724
- (1971).(59) R. Ditchfield, W. J. Hehre, and J. A. Pople, J. Chem. Phys., 56, 2257
- (1972)
- (60) P. G. Mezey and I. G. Csizmadia, *Can. J. Chem.*, **55**, 1181 (1977).
 (61) J. L. Whitten, *J. Chem. Phys.*, **44**, 359 (1966).

- (62) T. H. Dunning, Jr., J. Chem. Phys., 53, 2823 (1970).
 (63) T. H. Dunning, Jr., J. Chem. Phys., 55, 716 (1971).
 (64) T. H. Dunning, Jr., and P. J. Hay in "Modern Theoretical Chemistry", Vol.
- 3, H. F. Schaefer III, Ed., Plenum Press, New York, N.Y., 1977.
- (65) L. J. Lawlor, K. Vasudevan, and F. Grein, to be published.
 (66) P. C. Hariharan and J. A. Pople, *Theor. Chim. Acta*, 28, 213 (1973).
- (67) R. J. Buenker and S. D. Peyerimhoff, Theor. Chim. Acta, 35, 33 (1974).
- (68) R. J. Buenker and S. D. Peyerimhoff, Theor. Chim. Acta, 39, 217
- (1975). (69) R. J. Buenker and S. D. Peyerimhoff, *Chem. Rev.*, **74**, 127 (1974)
- (70) P. G. Burton and B. R. Markey, Aust. J. Chem., **30**, 231 (1977).
 (71) J. Berkowitz and A. C. Wahl, Adv. Fluorine Chem., **7** (1973).
- (72) S. Rothenberg and H. F. Schaefer III, J. Am. Chem. Soc., 95, 2095 (1973).

Paramagnetic Organometallic Compounds of the Early Transition Metals Stabilized by Chelating Benzyl and Phenyl Ligands

Leo E. Manzer

Contribution No. 2566 from the Central Research & Development Department, E. I. du Pont de Nemours and Company, Experimental Stàtion, Wilmington, Delaware 19898. Received April 17, 1978

Abstract: The reactions of LiCH₂C₆H₄-o-NMe₂ and LiC₆H₄-o-CH₂NMe₂ with Cp₂MCl (M = Ti, V, Sc; Cp = η^5 -C₅H₅), CpTiCl₂, CrCl₃, and ScCl₃ led to the isolation of thermally stable, air-sensitive organometallic complexes whose stability is attributed to chelation. The reaction of $CpTi(C_6H_4-o-CH_2NMe_2)_2$ with CO_2 leads to elimination of 1 equiv of N,N-dimethylbenzylamine and incorporation of CO₂ into the aromatic ring. The reaction of Cr(CH₂C₆H₄-o-NMe₂)₃ with CO₂ gives a paramagnetic complex in which CO_2 has inserted into only one Cr-C bond and with diketones to give (diketonate) $Cr(CH_2C_6H_4-C_6$ $o-NMe_2)_2$. The factors which contribute to the stabilization of paramagnetic organometallic compounds are discussed.

Introduction

The vast majority of organometallic compounds are diamagnetic.^{1,2} Little effort has been directed toward the synthesis of paramagnetic organometallic compounds because of the reactivity and instability of these compounds. The use of bulky alkyl substituents³⁻⁷ such as -CH₂SiMe₃, -CH(SiMe₃)₂, and -CMe₃ has yielded some very interesting and stable complexes. Recent work in our laboratory⁸⁻¹¹ as well as in others¹¹⁻¹² has shown that considerable stabilization can be achieved by the use of chelating organic ligands. For example, Brintzinger¹³ studied the reactions of alkyl Grignard reagents with Cp2TiCl and found that the resulting paramagnetic compounds, $Cp_2TiR_2^-$, were very reactive and unstable at room temperature. In contrast, we found¹⁴ that the chelating lithium reagents

 $Li(CH_2)_2PR_2$ reacted with Cp_2TiCl ,¹⁵ at room temperature, to give 1 as thermally stable, paramagnetic, crystalline solids.

Similar compounds were isolated for vanadium and scandium. The stability of these complexes prompted us to examine, in greater detail, the stabilizing effect of chelating organic ligands. The work described in this paper is concerned with the preparation of compounds of the general types 2 and 3 (where M = Sc, Ti, V, and Cr: L = Cp, diketone; x = 0, 1, 2; y = 1-3).

Table I.	Electronic Si	pectra and l	Magnetic	Moments	for Pa	ramagnetic	Organome	tallic	Complexe
			0			0			

		wavelength	extinction	magnetic moments	
compd ^a	solvent	nm	coefficient	solvent	μ_{eff}^{303}
$Cp_2V(C_6H_4CH_2NMe_2)$	THF	434	183	C ₆ H ₆	2.6
		514	140		
		683	161		
$Cp_2Ti(C_6H_4CH_2NMe_2)$	THF	740	48	C_6B_6	1.7
		635	45		
$Cr(p-t-BuC_6H_3CH_2NMe_2)_3$	THF	468	34	C_6H_6	3.7
$CpTi(C_6H_4CH_2NMe_2)_2$	C ₆ H ₅ Me	574	268	C ₆ H ₆	1.7
		705	211		
$Cr(CH_2C_6H_4NMe_2)_3$	CH_2Cl_2	656	80	CH_2Cl_2	3.6
		745	84		
$Cp_2V(CH_2C_6H_4NMe_2)$	C ₆ H ₅ Me	600	137	C_6H_6	2.6
		715	131		
$Cp_2Ti(CH_2C_6H_4NMe_2)$	C ₆ H ₅ Me	500	90	C_6H_6	1.7
		717	49		
$CpTi(CH_2C_6H_4NMe_2)_2$	C ₆ H ₅ Me	615	210	C ₆ H ₆	1.6
		770	150		
$Cr(DBM)(CH_2C_6H_4NMe_2)_2$	CH_2Cl_2	512	326	CH_2Cl_2	4.1
$Cr(acac)(CH_2C_6H_4NMe_2)_2$	C_6H_6	543	107	CH_2Cl_2	4.1
$\frac{Cr(O_2CCH_2C_6H_4NMe_2)(CH_2C_6H_4NMe_2)_2}{Cr(O_2CCH_2C_6H_4NMe_2)_2}$	C ₆ H ₆	621	214	CH_2CI_2	4.0

" DBM = anion of dibenzoylmethane; acac = anion of acetylacetone; Cp = cyclopentadienide.

Compounds of type **3** are known for copper,¹⁶ cobalt,¹⁷ gold,¹⁸ silver,¹⁹ nickel,²⁰ palladium,²⁰ and platinum.²⁰ The coverage has now been extended to include chromium, titanium, vana-

dium, and scandium. Derivatives of the isoelectronic benzylchelated compound, 2, have been prepared for the first time and are described in detail.

Results

A. Preparation of the Organolithium Reagents. The complexes described below were prepared from the lithium reagents **4** and **5**. The phenyllithium reagent has been prepared

previously under a variety of conditions.^{16,17,21} We have found that the most satisfactory procedure is to add an equimolar amount of *n*-butyllithium to an ether solution of *N*,*N*-dimethylbenzylamine. After 24 h, the white pyrophoric reagent, 4 (R = H), precipitates in essentially quantitative yield. It may then be filtered, washed with pentane, dried, and stored under a nitrogen atmosphere at room temperature. Starting with the substituted amine, $4 (R = -CMe_3)$ was prepared in good yield following the method of Cope and Gourley.¹⁷

The benzyllithium reagent, 5, cannot be prepared in good yield from equimolar amounts of N.N-dimethyl-o-toluidine and *n*-butyllithium in refluxing hexane. However, in an ether/hexane mixture, 5 precipitated after 2 days at room

temperature as a pale yellow, ether-free pyrophoric solid. It may be separated by filtration, washed with pentane, dried, and stored under nitrogen at room temperature for several years without signs of decomposition. Metalation of the methyl group was confirmed by NMR and mass spectroscopy after deuterolysis which gave only $Me_2NC_6H_4CH_2D$. It is very soluble in tetrahydrofuran and insoluble in ether and hydrocarbon solvents.

B. Preparation of Cyclopentadienyl Transition Metal Derivatives. The addition of 1 molar equiv of 4 (R = H) to a suspension of Cp₂MCl¹⁵ (M = Ti, V, Sc) in ether gave an immediate precipitate of LiCl. After the solutions were stirred for a short time, they were filtered and the solvent was removed to give Cp₂M(C₆H₄-o-CH₂NMe₂) as very air-sensitive, crystalline solids. The titanium and vanadium compounds are paramagnetic (Table I) with magnetic moments (determined in solution²²) indicating one and two unpaired electrons per metal, respectively. Teuben et al.¹² have recently reported the preparations of the titanium and vanadium complexes as part of a study of the thermal stabilities of organometallic compounds.

The addition of LiCH₂C₆H₄-o-NMe₂ to a magnetically stirred suspension of Cp₂TiCl in ether, under a nitrogen atmosphere, gave a dark green solution from which Cp₂Ti(CH₂C₆H₄-o-NMe₂) was isolated as a dark green, very air-sensitive, crystalline solid. The magnetic moment, determined in benzene, was $1.7 \mu_B$. Deuterolysis of 2 gave o-Me₂NC₆H₄CH₂D. Similarly, Cp₂V(CH₂C₆H₄-o-NMe₂) was obtained as a very air-sensitive, green-brown, crystalline solid from the reaction of 5 with Cp₂VCl in ether. In contrast to Cp₂TiCH₂C₆H₅,²³ which decomposes at room temperature, it may be stored at room temperature for several days under nitrogen with no apparent decomposition. The vanadium complex is much less stable than the titanium complex and decomposes after several days at room temperature under a nitrogen atmosphere.

The ESR spectrum of Cp₂Ti(CH₂C₆H₄-o-NMe₂) is unusual in that it shows a doublet at g = 1.981 from coupling of the electron with one hydrogen atom ($\langle a_H \rangle = 5.1$ G). The reason for the nonequivalence of the -CH₂-hydrogens is not clear but it may be due to steric interactions.²⁴

Green and Lucas²⁵ tried to prepare, without success, monocyclopentadienyl compounds $CpTiR_2$ by the reaction of $[CpTiCl_2]_x^{26}$ with the lithium or Grignard reagent of R. They

Figure 1. X-ray crystal structure of CpTi(C₆H₄-o-CH₂NMe)₂.

found that disproportionation occurred to give Ti(II) and Ti(IV) compounds. In contrast, 2 equiv of 4 and 5 reacted smoothly with $[CpTiCl_2]_x$ in ether to give $CpTi(CH_2C_6H_4$ $o-NMe_2)_2$ and $CpTi(C_6H_4-o-NMe_2)_2$ as dark green, crystalline, very air-sensitive compounds. The magnetic moments of 1.6–1.7 μ_B , which were determined in benzene, are consistent with a d¹ electronic configuration. Both of these compounds should be stored under nitrogen at <0 °C since decomposition occurs within a few days at room temperature. The X-ray crystal structure of $CpTi(C_6H_4-o-CH_2NMe_2)_2$ has been determined⁸ and is reproduced in Figure 1. It is noteworthy that the two bidentate dimethylaminomethylphenyl ligands adopt roughly a trans configuration about titanium. The molecule has a 15-electron configuration and would be expected to form an adduct with a suitable donor ligand; however, we have found no interaction (by UV or ESR) with either trimethylphosphine or pyridine. When a solution of $CpTi(C_6H_4-o-CH_2NMe_2)_2$ in toluene was heated to 74 °C, under an atmosphere of dry CO₂, the color changed from green to red-brown over 4 h and a rust-colored, crystalline compound precipitated. The solution was cooled and filtered, and the solid was washed with pentane. Analysis of the filtrate by GC/MS showed that $C_6H_5CH_2NMe_2$ was eliminated in this reaction. The elemental analysis and infrared spectrum, which shows a strong, sharp band at 1710 cm^{-1} , are consistent with 6. The reaction is not unprecedented since Vol'pin and co-workers²⁷ found that reaction of CO_2 with $Cp_2Ti(C_6H_5)_2$ gave 7, whose structure was determined by X-ray crystallography.

C. Reaction of MCl₃ (M = Ti, V, Sc, Cr, Fe). The addition of LiC_6H_4 -o-CH₂NMe₂ to a stirred suspension of CrCl₃ in tetrahydrofuran gave an orange suspension of Cr(C₆H₄-o-CH₂NMe₂)₃. It was removed by filtration, washed with ethanol to remove LiCl, and then dried. It is stable and insoluble in CH₂Cl₂, Me₂SO, DMF, H₂O, and nitromethane and decomposes only slowly in air. Because of its insolubility, we prepared the analogous *tert*-butyl substituted derivative, **8**. Unlike the unsubstituted chromium(III) organometallic, **8** is

soluble in ether and may be recrystallized from hot hexane. The magnetic moment is consistent with a d³ electronic configuration.²⁸

The scandium compound $Sc(C_6H_4-o-CH_2NMe_2)_3$ was prepared from $ScCl_3$ and $LiC_6H_4-o-CH_2NMe_2$ in refluxing tetrahydrofuran and was obtained as a white, insoluble compound. Unlike the chromium analogue, it is pyrophoric in air and decomposes violently in CH_2Cl_2 and methanol.

The addition of 3 equiv of $LiCH_2C_6H_4$ -o-NMe₂ to a suspension of CrCl₃ in THF gave an immediate reaction and a dark orange solution from which dark red crystals of **9** were

isolated in 83% yield. The analytical data, magnetic moment (3.6 μ_B), and mass spectrum, which showed a parent ion peak, are consistent with structure **9**. The benzyl compound is pyrophoric and soluble in CH₂Cl₂, toluene, and tetrahydrofuran. The benzylscandium complex, Sc(CH₂C₆H₄-o-NMe₂)₃, was prepared from anhydrous ScCl₃ and 3 equiv of LiCH₂C₆H₄-o-NMe₂ in tetrahydrofuran and isolated as an extremely airsensitive, pale yellow, crystalline solid. Crystallization and purification proved to be exceedingly difficult and the yield was 50-70%. The compound is diamagnetic and its NMR spectrum in benzene at room temperature showed equivalent N-Me resonances and a singlet for the benzylic hydrogens.

Unlike $Cr(C_6H_4-o-CH_2NMe_2)_3$, **9** reacts with a variety of reagents containing acidic hydrogens. The addition of 1 molar equiv of a diketone to a suspension of $Cr(CH_2C_6H_4-o-NMe_2)_3$ in benzene gave deep red solutions from which crystalline compounds of the composition (diketonate) $Cr(CH_2C_6H_4-o-NMe_2)_2$ were isolated in good yield. They are much less air sensitive than the parent complex.

Triphenylsilanol reacted rapidly with a suspension of $Cr(CH_2C_6H_4$ -o-NMe₂)₃ in ether to give a dark blue solution from which a dark green solid was isolated. The analytical data and magnetic moment (determined in CH_2Cl_2) are consistent with the formulation $Cr[OSi(C_6H_5)_3]_3$. No reaction takes place between **9** and excess cyclopentadiene at room temperature after 24 h.

Carbon dioxide did not react rapidly with $Cr(CH_2C_6H_4-o-NMe_2)_3$ under low pressure (15 psi) at room temperature in toluene. Upon raising the temperature to 75 °C, the pressure rapidly decreased and a deep red solution resulted from which a dark red, crystalline material was isolated. The analytical data indicate that 1 equiv of CO_2 had been incorporated into the molecule. The magnetic moment of 4.0 μ_B is consistent with a d³ ion in an octahedral environment. The infrared spectrum showed a strong, sharp band at 1532 cm⁻¹. Therefore structure **10** is proposed.

Despite several attempts, we were unable to isolate stable crystalline products from the reactions of VCl₃, VCl₃(THF)₃, TiCl₃, TiCl₃(THF)₃, and TiCl₃(NMe₃)₂ with 4 and 5 under a variety of conditions. The reaction of FeCl₃ with 3 equiv of LiC_6H_4 -o-CH₂NMe₂ in THF, at -80 °C, gave a blood-red, crystalline precipitate. Upon warming the solution to room temperature the compound decomposed. Because of its thermal instability and insolubility, no further effort was made to purify and characterize the material.

Discussion

Organometallic compounds are well known for all of the transition metals^{1,2} and, by far, most of these compounds are diamagnetic. The reasons for the scarcity of paramagnetic organometallic compounds are twofold.

(1) The majority of research has focused on the preparation of diamagnetic organometallic compounds primarily because they are much easier to characterize and study by nuclear magnetic resonance spectroscopy. Paramagnetic organometallics generally do not exhibit sharp NMR spectra because of rapid electron spin relaxation. Their ESR spectra are generally broad and/or featureless and do not yield valuable structural information without detailed and time-consuming analysis. Characterization of paramagnetic organometallic molecules is based primarily on elemental analyses and magnetic susceptibility data, which can be extremely difficult to obtain because of the reactive nature of the compounds.

(2) Paramagnetic compounds are generally less stable and more reactive than their diamagnetic counterparts and, therefore, are more difficult to isolate. For example, the diamagnetic dihydrides of molybdenum and tungsten,²⁹ Cp₂MH₂, are thermally stable and sublimable. Their isostructural paramagnetic analogues,³⁰⁻³² Cp₂NbH₂ and Cp₂TaH₂, have only been characterized by ESR at low temperature and decompose on warming to room temperature.

We believe that there are three primary modes of decomposition for paramagnetic organometallic compounds which must be kinetically controlled or blocked to achieve stabilization. They are as follows.

A. Oligomerization: $\mathbf{R}_x \dot{\mathbf{M}} \rightarrow \mathbf{R}_x \mathbf{MMR}_x$. In the absence of steric effects, paramagnetic organometallic compounds tend to dimerize or oligomerize to minimize the electron spin on each metal center. This mode of decomposition is predominant in the chemistry of Re, Mo, W, and Cr.³² For example, Li₂(THF)₂CrMe₄,³³ which is formally a d⁴ complex, exists as a dimer with a quadruple bond postulated to account for the diamagnetism.

B. Disproportionation: $2\dot{M}(y) \rightarrow M(y + 1) + M(y - 1)$. Disproportionation reactions are very common decomposition pathways. For example, Green and Lucas²⁵ tried to prepare, without success, monocyclopentadienyl compounds CpTiR₂ by the reaction of [CpTiCl₂]_x with the lithium or Grignard reagents of R. They found that disproportionation occured to give CpTiR₃ and uncharacterized Ti(II) compounds.

C. Homolysis: $\mathbf{R}_x \dot{\mathbf{M}} \rightarrow \mathbf{R}_{x-1}\mathbf{M} + \dot{\mathbf{R}}$. Homolytic cleavage reactions of metal-carbon bonds are not well documented, although there is some evidence for this reaction in the chemistry of Mn(II) and Co(II).

Oligomerization and disproportionation are decomposition modes controlled by both kinetic and thermodynamic factors; homolysis, principally by thermodynamic factors. The use of organic ligands with built-in donor atoms clearly enhances the thermal stability of paramagnetic organometallic molecules. The chelating group presumably inhibits mode (C) by tightly binding the alkyl or aryl group and inhibits (B) by supplying ligands to fill in the coordination sphere of the metal.

The presence of ligands which are capable of electron delocalization also enhances the thermal stability of paramagnetic organometallic molecules. For example, the stability of

compounds 11 dramatically increases as the number of cyclopentadienyl ligands increases from zero to two. This series is complicated by the different electron-donating contributions of the cyclopentadienyl and the *o*-aminophenyl ligand. Similarly, the diketonate ligand adds considerable stability to the series of compounds 12. We were unable to isolate the tri-

phenyl- and tribenzyl-chelated compounds for Ti and V because of their instability, yet the diketonate diorgano derivatives, 12 (M = Ti, V; R = t-Bu; x = 1), were sufficiently stable for isolation.^{9.34} They were prepared by reaction 1. The dike-

tonate and cyclopentadienyl ligands have the capability of delocalizing electron density from the metal center, thereby decreasing the radical nature of the metal center. We are in the process of calculating electron densities in these molecules by molecular orbital calculations and will report the results elsewhere.

We have prepared and characterized some interesting Cr(II) and Mn(II) derivatives²⁴ containing the dimethylaminomethylphenyl and 2-dimethylaminobenzyl ligands. Full details of that work will be reported later.

Catalytic Studies. Many of the compounds described in this paper are active coordination catalysts for the polymerization of olefins.³⁵ Full details of the polymerization studies will be published elsewhere.

Experimental Section

All reactions, manipulations, and crystallizations were performed under an atmosphere of dry nitrogen in a Vacuum Atmospheres drybox. All solvents were dried by passage through columns of Linde grade 4A molecular sieves and sparged with nitrogen prior to use.

Elemental analyses were performed by the Physical and Analytical Division of the Central Research and Development Department and by Alfred Bernhardt (West Germany).

Cp₂TiCl, Cp₂VCl, and Cp₂ScCl(THF) were prepared by previously published methods.¹⁵

Preparation of LiC₆H₄-o-CH₂NMe₂. A mixture of 135.2 g of N,N-dimethylbenzylamine and 625 mL of a 1.6 M solution of *n*-butyllithium in hexane in 1 L of diethyl ether was magnetically stirred overnight under a nitrogen atmosphere. A white solid precipitated. The flask was transferred to the drybox and the solution was filtered. The solid was washed with pentane and dried under vacuum. The yield of LiC₆H₄-o-CH₂NMe₂ was 140 g (99%).

Preparation of L1-t-BuC₆H₄CH₂NMe₂. Fifty grams of p-(tertbutyl)benzyldimethylamine¹⁷ was added to 163 mL of a 1.6 M solution of *n*-butyllithium in hexane. The solution was refluxed under nitrogen for 16 h. It gradually turned orange and a white powder precipitated. The flask was then cooled and transferred to the drybox, and the solid was filtered off and washed with pentane to give 46 g of a white solid (90%).

Preparation of Cp₂Sc(C₆H₄-*o*-CH₂NMe₂). To a suspension of Cp₂ScCl(THF) (3.0 g, 10.61 mmol) in ether was added LiC₆H₄-*o*-CH₂NMe₂ (1.50 g). The solution was stirred for 30 min and filtered. Crystals separated immediately. The ether was concentrated by rotary evaporation, pentane was added, and the crystals were filtered off and washed with pentane. Yield was 87%, mp 150 °C.

Anal. Calcd for ScC₁₉H₂₂N; C, 73.77; H, 7.17; N, 4.53. Found: C, 72.74; 73.01, 73.41; H, 7.05; N, 4.38.

NMR (C₆D₆/Me₄Si): δ (C₅H₅) -5.95, δ (CH₂) -3.23, δ (NMe) -1.67.

Preparation of $Cp_2V(C_6H_4$ -*o*- CH_2NMe_2). To a suspension of $Cp_2VCl(3.0 \text{ g}, 13.8 \text{ mmol})$ in ether was added Li[*o*- $C_6H_4CH_2NMe_2$] (1.96 g, 13.8 mmol). The color rapidly turned dark green, and after stirring for 1 h the solution was filtered and the LiCl was washed with ether. The solvent was removed by rotary evaporation to give dark green crystals that were washed from the flask with pentane, yield 2.90 g (67%), mp 113–115 °C.

Anal. Calcd for VC₁₉H₂₂N: C, 72.37; H, 7.03; N, 4.44; V, 16.16. Found: C, 71.92; H, 6.83; N, 4.38; V, 17.02.

Preparation of Cp₂Ti(C₆H₄-o-CH₂NMe₂). Cp₂TiCl (3.0 g, 14.04 mmol) was suspended in ether and with stirring $\text{LiC}_{6}\text{H}_{4}\text{CH}_{2}\text{NMe}_{2}$ (1.98 g, 14.04 mmol) was added. The solution turned red-purple, and after stirring for 1 h it was filtered. The LiCl was washed with ether until the washings were colorless. The ether was reduced in volume to give mauve crystals which were filtered off and washed with pentane. The yield was 3.93 g (90%), mp 134-135 °C.

The analytical sample was recrystallized by dissolving a portion in the minimum volume of THF, followed by the addition of a small amount of ether and pentane. The flask was cooled at -40 °C for 12 h to give large, mauve crystals.

Anal. Caled for TiC₁₉H₂₂N: C. 73.08; H, 7.10; N, 4.49; Ti, 15.34. Found: C, 72.71; H, 7.38; N, 4.51; Ti, 15.26.

Preparation of Sc(C_6H_4 -o-CH₂NMe₂)₃. Anhydrous scandium chloride (2.0 g, 13.2 mmol) was suspended in THF and LiC₆H₄CH₂NMe₂ (5.60 g, 39.6 mmol) was added as a solid. The solution was refluxed for 1 h and all of the solids were dissolved. The solution was then cooled and a white solid precipitated. It was filtered, then washed with THF and ether. The filtrate was stripped to dryness to give a white solid that was washed from the flask with THF, total yield 4.80 g (81%), mp 180-182 °C.

Anal. Calcd for ScC₂₇H₃₆N₃: C, 72.46; H, 8.11; N, 9.39. Found: C, 69.24; H, 7.96; N, 9.51.

Preparation of Cr(C₆H₄-o-CH₂NMe₂)₃. Anhydrous CrCl₃ (2.0 g, 12.6 mmol) was suspended in 100 mL of THF and solid $\text{LiC}_{6}\text{H}_{4}\text{CH}_{2}\text{NMe}_{2}$ (5.72 g, 37.8 mmol) was added. An orange solid precipitated, and after stirring for 1 h the solid was filtered off and washed with THF, ethanol, ether, and pentane. The yield was quantitative. The compound was insoluble in CH₂Cl₂, Me₂SO, DMF, and nitromethane and decomposed in the air within 1 h.

Anal. Calcd for $CrC_{27}H_{36}N_3$; C, 71.33; H, 7.98; N, 9.25. Found: C, 70.30; H, 7.90; N, 9.21.

Preparation of Cr(t-Bu-C₆H₃-CH₂NMe₂)₃. Anhydrous CrCl₃ (2.0 g, 12.63 mmol) was suspended in 200 mL of ether and, with stirring, Li(*t*-Bu-C₆H₃CH₂NMe₂) (7.48 g, 37.8 mmol) was added. The CrCl₃ rapidly dissolved to give an orange solution. After stirring for 2 h, the solution was filtered and the lithium chloride was washed with ether. The ether was then removed by rotary evaporation to give an orange oil. The addition of pentane caused crystals to form so the flask was cooled at -40 °C for 2 h and the crystals were filtered off. The yield was 66%, mp 224-225 °C.

The analytical sample was recrystallized by dissolving a sample in boiling hexane and cooling at -40 °C for 24 h. The orange crystals were filtered off and dried in vacuo.

Anal. Calcd for CrC₃₉H₆₀N₃: C, 75.19; H, 9.71; N, 6.75; Cr, 8.35. Found: C, 75.79; H, 9.63; N, 6.81; Cr, 7.63.

Preparation of Li(CH₂C₆H₄-o-NMe₂). To a stirred solution of o-N,N-dimethylaminotoluene (96.0 g, 0.71 mol) in 300 mL of hexane and 50 mL of ether was added 444 mL of a 1.6 M solution of BuLi in hexane. The solution was stirred at room temperature for 2 days to give yellow crystals. The solid was filered off in the box and washed with pentane. Yield was quantitative, mp >200 °C.

Preparation of Sc(CH₂C₆H₄-o-NMe₂)₃. To a suspension of anhydrous ScCl₃ (2.0 g, 13.2 mmol) in THF was added LiCH₂C₆H₄NMe₂ (5.60 g, 39.6 mmol). The solution was stirred overnight to give a deep

orange-yellow solution. The THF was stripped off to give an oil that was dissolved in toluene and filtered, and the toluene was stripped off. Ether was added and a flask was agitated for several minutes to give large, pale yellow crystals. The crystals were filtered off and washed with pentane, yield 3.30 g (56%), mp 115-118 °C.

Anal. Calcd for ScC₂₇H₃₆N₃: C, 72.45; H, 8.11; N, 9.39. Found: C, 70.72; H, 8.05; N, 9.56.

NMR (220 MHz) $C_6D_6/Me_4Si: \delta(CH_2) - 1.64, \delta(NMe) - 2.27.$

Preparation of Cr(CH₂C₆H₄-o-NMe₂)₃. To a stirred suspension of CrCl₃ (3.15 g, 19.9 mmol) in THF was added LiCH₂C₆H₄NMe₂ (8.47 g, 60.0 mmol). The solution became warm and turned dark orange. After stirring for 15 min the solvent was evaporated and the solids were washed from the flask with ether. The dark red crystals were dissolved in CH₂Cl₂ and filtered through Celite, and the LiCl was washed with CH₂Cl₂ until the washings were colorless. The CH₂Cl₂ was evaporated to give dark red crystals that were washed from the flask with ether, yield 7.50 g (83%), mp 167–168 °C.

Anal. Calcd for CrC₂₇H₃₆N₃: C, 71.33; H, 7.98; N, 9.25. Found: C, 70.05; H, 7.93; N, 9.92.

Preparation of Cp₂V(CH₂C₆H₄-o-NMe₂). To a solution of Cp₂VCl (3.0 g, 13.8 mmol) in ether was added LiCH₂C₆H₄NMe₂ (1.96 g, 13.8 mmol). The solution gradually turned green-brown, and after stirring for 1 h it was filtered. The ether was removed to give green-brown crystals that were washed from the flask with pentane. The pentane filtrate was cooled to -40 °C for several hours to give a further crop of green-brown crystals, yield 3.85 g (80%), mp 67-70 °C.

Anal. Calcd for VC₁₉H₂₂N; C, 72.37; H, 7.03; N, 4.44. Found: C, 71.68; H, 7.02; N, 5.05.

Preparation of Cp₂Ti(CH₂C₆H₄-*o***-NMe₂). To a stirred suspension of Cp₂TiCl (3.02 g, 14.2 mmol) in 150 mL of ether was added solid Li(CH₂C₆H₄NMe₂) (2.0 g, 14.2 mmol). The solution was magnetically stirred for 1 h, then filtered to give a green solution. The solids on the filter were washed with benzene until the washings were colorless, then the volume was reduced by rotary evaporation. Pentane was added, the flask was cooled to about -20 °C, and the green crystals were filtered, washed with pentane, and dried. Yield was 4.20 g (95%), mp 154-155 °C.**

Anal. Calcd for TiC₁₉H₂₂N: C, 73.08; H, 7.10; N, 4.49; Ti, 15.34. Found: C, 72.21; H, 7.05; N, 4.65; Ti, 15.94.

ESR (in toluene at 35 °C) g = 1.981; $(a_{\rm H}) 5.1$ G, $\langle a_{\rm Ti} \rangle 7.2$ G.

Preparation of CpTI(**CH₂C₆H₄-o-NMe₂)₂.** To a stirred suspension of [TiCpCl₂]_x (2.0 g, 10.9 mmol) in ether was added solid LiCH₂C₆H₄NMe₂ (3.07 g, 21.8 mmol). The solution was stirred for 4 h to give a dark green color, then filtered. The solvent was removed by rotary evaporation to give a dark green, sticky solid. Pentane was added, and after 1 h the solution was filtered to give 2.0 g of dark green crystals. The green pentane solution was cooled to -40 °C to give 0.43 g of dark crystals, total yield 59%, mp 118-125 °C.

Anal. Caled for Ti N₂C₂₃H₂₉: C. 72.43; H. 7.66; N. 7.35. Found: C. 71.56; H. 7.65; N. 7.15.

ESR spectrum (toluene, $-60 \degree$ C): g = 1.977.

Preparation of CpTi(O_2C)C₆H₃-o-CH₂NMe₂. A solution of CpTi($C_6H_4CH_2NMe_2$)₂ (1.04 g) in 25 mL of toluene was heated to 74 °C in a pressure bottle under an atmosphere of dry CO₂ at 15 psi. The solution gradually turned from green to red-brown over 4 h and a rust-colored, crystalline compound separated. The solution was cooled and filtered, and the solid was washed with pentane, mp 179-181 °C.

Anal. Calcd for $TiO_2NC_{15}H_{16}$: C, 61.86; H, 5.88; N, 4.81; Ti, 16.44. Found: C, 61.82; H, 6.00; N, 5.10; Ti, 17.20.

1R (Nujol) shows a broad peak at 1710 cm⁻¹. ESR (toluene, room temperature): g = 1.979; $\langle a_{Ti} \rangle = 12.6$ G.

Preparation of Cr(DBM)(CH₂C₆H₄-o-NMe₂)₂. To a stirred suspension of Cr(CH₂C₆H₄-o-NMe₂)₃ (1.5 g, 3.30 mmol) in benzene was added dibenzoylmethane (0.74 g, 3.30 mmol). The solution became deep red, and after stirring for 30 min it was filtered and the benzene was removed to give a red oil. Ether was added and the flask was set aside for 10 min. Large red crystals separated. They were filtered off and washed with pentane. Yield was 1.38 g (78%), mp 197-198 °C.

Anal. Calcd for CrC₃₃H₃₅N₂O₂: C, 72.89; H, 6.49; N, 5.15; O, 5.89. Found: C, 71.99, 72.50, 71.92; H, 6.43, 6.49, 6.59; N, 4.97, 5.21; O, 6.12, 6.16.

Preparation of $Cr(acac)(CH_2C_6H_4-o-NMe_2)_2$. To a stirred suspension of $Cr(CH_2C_6H_4-o-NMe_2)_3$ (1.5 g, 3.30 mmol) in benzene

was added acetylacetone (0.33 g, 3.30 mmol). The solution became deep red-purple. After stirring for 1 h the solution was filtered and the benzene was removed by rotary evaporation to give a deep red oil. Pentane was added and the flask was cooled to -40 °C overnight to give dark red crystals that were filtered off and dried. Yield was 70%, mp 138-140 °C.

Anal. Calcd for CrC₂₃H₃₁N₂O₂: C, 65.85; H, 7.45; N, 6.68; O, 7.63. Found: C, 64.75, 64.45, 65.18; H, 7.30, 7.46, 7.74; N, 6.40, 6.49; O, 7.82.7.71.

Preparation of Cr(O₂CCH₂C₆H₄-o-NMe₂)(CH₂C₆H₄-o-NMe₂)₂. A pressure bottle containing $Cr(o-CH_2C_6H_4NMe_2)_3$ (1.50 g, 3.30 mmol) dissolved in 30 mL of toluene was evacuated and pressurized to 15 psi with CO2. No reaction occurred at ambient temperature so the solution heated to 75 °C. The pressure rapidly dropped and the solution became deep red. The solution was cooled, transferred to the box, and filtered. The solvent was removed to give a deep red oil. It was dissolved in ether, pentane was added, and the flask was cooled to give dark red crystals that were filtered off and washed with pentane. Yield was 88%, mp 110-112 °C.

Anal. Calcd for CrC₂₈H₃₆N₃O₂: C, 67.44; H, 7.78; N, 8.43; Cr, 10.43. Found: C, 67.27; H, 6.85; N, 8.63; Cr, 10.65.

Preparation of Cr(OSIPh₃)₃. Triphenylsilanol (2.08 g, 7.53 mmol) was added to a suspension of Cr(CH₂C₆H₄NMe₂)₃ (1.14 g, 2.51 mmol) in ether. The solution turned deep blue, and after 30 min it was filtered and the ether was removed to give a green oil. A small amount of ether was added to dissolve the oil, pentane was added, and the flask was cooled to -40 °C. Green crystals separated; they were filtered off and washed with pentane. Yield was 1.97 g, mp 112-115 °C.

Anal. Caled for CrO₃Si₃C₅₄H₄₅: C, 73.85; H, 5.16; O, 5.47; Cr, 5.92. Found: C, 71.57; H, 5.45; O, 6.81; Cr, 6.15.

Electronic spectrum (C₆H₆): 438 nm (ϵ 89), 862 (120). Magnetic moment (CH₂Cl₂): $\mu_{eff} = 3.7 \mu_{B}$.

Preparation of CpTi(O₂C)C₆H₃CH₂NMe₂. A solution of $CpTi(C_6H_4CH_2NMe_2)_2$ (1.04 g) in 25 mL of toluene was heated to 74 °C in a pressure bottle under an atmosphere of dry CO_2 at 15 psi. The solution gradually turned from green to red-brown over a period of 4 h and a rust-colored, crystalline compound separated. The solution was cooled and filtered and the solid was washed with pentane, mp 179-181 °C.

Anal. Calcd for TiO₂NC₁₅H₁₇: C, 61.86; H. 5.88; N, 4.81; Ti, 16.44. Found: C, 61.82; H, 6.00; N, 5.10; Ti, 17.20.

IR (Nujol) shows a broad peak at 1710 cm⁻¹.

ESR (toluene, room temperature): g = 1.979; $(a_{Ti}) = 12.6$ G.

Acknowledgments. I am grateful to Dr. P, Krusic for re-

cording some of the ESR spectra and to Dr. G. W. Parshall for helpful discussions.

References and Notes

- (1) R. R. Schrock and G. W. Parshall, Chem. Rev., 76, 243 (1976).
- (2) P. J. Davidson, M. F. Lappert, and R. Pierce, Chem. Rev., 76, 219 (1976).
- W. Moffat, A. J. Shortland, G. Yagupsky, N. J. Hill, M. Yagupsky, and G. Wilkinson, J. Chem. Soc., Dalton Trans., 533 (1972). M. R. Collier, M. F. Lappert, and R. Pierce, J. Chem. Soc., Dalton Trans., (4)
- 445 (1973).
- (5) W. Kruse, J. Organomet. Chem., 42, C39 (1972).
- B. K. Bower and H. A. Tennant, J. Am. Chem. Soc., 94, 2512 (1972).
 W. Mowat, A. J. Shortland, N. J. Hill, and G. Wilkinson, J. Chem. Soc., Dalton
- Trans. 770 (1973).
 L. E. Manzer, R. C. Gearhardt, L. J. Guggenberger and J. F. Whitney, *J. Chem. Soc.*, *Chem. Commun.*, 942 (1976).
- (9) L. E. Manzer, J. Am. Chem. Soc., 99, 276 (1977)
- (10) L. E. Manzer, J. Organomet. Chem., 135, C9 (1977)
- (11) H. J. de Liefde Meijer and F. Jellinek, Inorg. Chim. Acta, 4, 651 (1970). (12) D. Ytsma, J. G. Hartswiker, and J. H. Teuben, J. Organomet. Chem., 74, 239 (1974).
- (13) H. Brintzinger, J. Am. Chem. Soc., 89, 6871 (1967).

- (13) H. Binitzinger, J. Ann. Chem. 302, 33, 687 (1957).
 (14) L. E. Manzer, Inorg. Chem., 15, 2567 (1976).
 (15) L. E. Manzer, J. Organomet. Chem., 110, 291 (1976).
 (16) G. van Koten and J. G. Noltes, J. Organomet. Chem., 102, 551 (1975); G. van Koten, A. J. Leusink, and J. G. Noltes, *ibid.*, 85, 105 (1975); 84, 117 (1975); G. van Koten and J. G. Noltes, *ibid.*, 84, 129 (1975).
- (17) A. C. Cope and R. N. Gourley, J. Organomet. Chem., 8, 527 (1967)
- (18) G. van Koten and J. G. Noltes, J. Organomet. Chem., 82, C53 (1974).
- (19) A. J. Leusink, G. van Koten, J. W. Marsman, and J. G. Noltes, J. Organomet. Chem., 55, 419 (1973).
- (20) G. Longoni, P. Fantucci, P. Chini, and F. Canziani, J. Organomet. Chem., **39**, 413 (1972). (21) C. T. Viswanathan and C. A. Wilkie, *J. Organomet. Chem.*, **54**, 1
- (1973).
- (22) D. F. Evans, J. Chem. Soc., 2003 (1959). J. H. Teuben, J. Organomet. Chem., 69, 241 (1974).
- (24) L. E. Manzer and L. J. Guggenberger, J. Organomet. Chem., 139, C34
- (1977).
 (25) M. L. H. Green and C. R. Lucas, *J. Organomet. Chem.*, **73**, 259 (1974).
 (26) R. S. P. Coutts, R. L. Martin, and P. C. Wailes, *Aust. J. Chem.*, **24**, 2533
- (1971). (27) I. S. Kolomnikov, T. S. Lobeeva, V. V. Gorbachevskaya, G. G. Alekoandrov,
- Yu. T. Struckhar, and M. E. Vol'pin, *Chem. Commun.*, 972 (1971). (28) B. N. Figgis and J. Lewis, *Prog. Inorg. Chem.*, **6**, 37 (1967). (29) R. B. King, "Organometallic Synthesis", Vol. I, Academic Press, New York,
- N.Y., 1965.
- (30) I. H. Elson, J. K. Kochi, U. Klabunde, L. E. Manzer, G. W. Parshall, and F. N. Tebbe, J. Am. Chem. Soc., 96, 7374 (1974).

- (31) L. E. Manzer, *Inorg. Chem.*, **16**, 525 (1977).
 (32) I. H. Elson and J. K. Kochi, *J. Am. Chem. Soc.*, **97**, 1262 (1975).
 (33) F. A. Cotton, *Chem. Soc. Rev.*, **4**, 17 (1975); J. Krausse, G. Marx, and G. Schödl, *J. Organomet. Chem.*, **21**, 159 (1970).
- (34) L. E. Manzer, *Inorg. Chem.*, 17, 1552 (1978).
 (35) L. E. Manzer, U.S. Patent 4 057 565.